\ ‘netaxis

SOLUTIONS

Registrar Configuration

Technical Note

S ‘netaxis Registrar Configuration

SOLUTIONS

Table of Contents
1 Introduction 2
1.1 Terminology o o o o e e e e 2
2 Sample configuration for registering a user 2
3 Database for the SRE Registrar 3
3.1 Tablecustomers e 3
3.2 Tablecustomer_numbers 4
3.2.1 Configurationexample 4
4 Service Logic scripts 5
4.1 Authenticationand SREregistrar o 5
4.1.1 Simple Service Logic script for registration with authentication. 6
4.2 Callauthentication e 9
4.2.1 Outgoing call: simple script for a call with authentication 10
4.2.2 Incoming call: lookup in locationservices 13
4.3 CallScreening e 14
5 Appendix1 16
5.1 Prerequisites e e e e e e e 16
5.2 Sample configuration of Kamailio oL 16
5.3 MongoDBinstallation. e 17
5.4 MongoDBreplicaset configuration o L. 18
5.5 MongoDB replica set configuration withan Arbiter 19
5.6 PopulatingMongoDB e 20
6 Appendix2 21
6.1 Basicregistration Servicelogic o oo o 21
6.2 Databaseentryexample e 24
6.3 Callflowexample for REGISTRATION 25
7 Troubleshooting 25
7.1 MongoDB 25

Technical Note 1

S ‘netaxis Registrar Configuration

SOLUTIONS

1 Introduction

The typical use case of SRE configured as registrar is where a customer has a SIP PBX which must register
toa Service Provider, and the Service Provider has an Access SBC and an SRE platform. The Registrarand
Digest Authentication feature needs to be enabled on the SRE platform via the registrar license so that
each Call Processor Instance can act as a SIP Registrar and can authenticate SIP messages. Registration
data (Location Service) is dynamic and is stored in a MongoDB database that can be distributed on
multiple servers with a mechanism preventing split-brain. Typically, the Mongo database will be
deployed as a three-member replica set. Besides the typical SRE requirements, some additional
requirements related to MongoDB must be fulfilled.

1.1 Terminology

« Domain. This is the domain of the SIP Registrar/Proxy server. It is unique for the complete SRE
platform. By default in Kamailio this is the IP address of the SRE Registrar server, but it can be
changed by setting the alias parameter in kamailio.cfg:

1 /* add local domain aliases x/
2 alias="netaxis.be"

A restart of Kamailio is required.

+ AoR (Address of Record). This is the URI identifying the PBX, used as identifier by the PBX to
register. As the domain is unique, we usually only work with the user part of the Address of
Record (in the SRE data model and the script).

+ PBX Contact. This is the URI of the PBX containing the IP address/port of the PBX.

+ Location Service. It contains bindings created during PBX registration: a binding is a couple
(PBX AoR, Contact).

+ PBXDIDs. Direct Inward Dialing numbers, numbers behind the PBX

2 Sample configuration for registering a user

Use a SIP client of your choice (for example X-Lite), and configure it with the typical information:

« User D is the user part of the PBX AoR
« Domain is the SRE Registrar domain
« Address is the outbound proxy (SBC,...)

Technical Note 2

N

'netaxis Registrar Configuration

SOLUTIONS

In the REGISTER message, the following information is observed:

©

10

11

il

)

The domain, in the Request URI of the SIP REGISTER messages sent by the PBX
The Address of Record of the PBX, in the TO header field
The Contact field, in the CONTACT header

REGISTER sip:netaxis.be SIP/2.0
Via: SIP/2.0/UDP 10.0.9.166:5060;branch=z9hG4bK-524287-1---3f6c1d404b0e8958

Max-Forwards: 70

Contact: <sip:john@10.0.9.166:5060;rinstance=21ba7bb0142bc22f>
To: <sip:john@netaxis.be>

From: <sip:john@netaxis.be>;tag=c8243546

Call-ID: 92984MGM3ZmYONzk5MmMRKNmM2MmV1INjU2YjkzOTZi0WRKZJE
CSeq: 1 REGISTER

Expires: 3600
Allow: SUBSCRIBE, NOTIFY, INVITE, ACK, CANCEL, BYE, REFER, INFO, OPTIONS

User-Agent: X-Lite release 5.3.3 stamp 92984
Content-Length: 0

3 Database for the SRE Registrar

The database can vary depending on the requirements of the customer, but as minimum, it should
contain the following tables (names of the tables and fields can be customized)

3.1

Table customers

TABLE COLUMNS

Hame Type DOptiong

id integer primary key

vy et s indensd @unigue sullsble el value n

WM bexk: Indexed unique @rullable default value n

passwond bk H indexed unique Enullable default value n
bek H indexed wnique Erullable default value n

e

A Subscriber represents a PBX that registers to the SRE Registrar. Each Subscriber hosts several DIDs.

Technical Note

b)’netaxis Registrar Configuration

SOLUTIONS

3.2 Table customer_numbers

TABLE COLUMNSE

Mame Type Options

W integer primany key

PR bt H dexed Munigue nullable B defelt value 31000 IEI“
is_range bockean - mdesed unigue nullable 1 defaait value | Fale - E‘ n
customer_id Fewneign key customersid B indexed unigue nullable Edefaaitvalue 1 |ﬁ| n

It contains the numbers belonging to the customer. The column customer_id is a foreign key of the
table customers.

Note: the boolean is_range is not strictly necessary. The registration itself is working also without.

3.2.1 Configuration example

Entry of table customers

Edit Record

RECORD PROPERTIES

name bestFLEG
uLErname s st bo MULL
password dummypassword set bo MULL
aor user@solunanl.sre.netaxis clowd set bo MULL

B o

Entry of table customer_numbers

Edit Record

RECORD PROFERTIES

number +3195955
Is_range False -
customer_id 1 - testFLEG - user - dummypassword - user@selunonl.srenetaxis.clowd -

m Cancel

Technical Note 4

S ‘netaxis Registrar Configuration

SOLUTIONS

4 Service Logic scripts

A basic service logic script that needs to handle authentication requires at least the following blocks:

» Sequential and Combined conditions blocks, to be used in several steps, are described later in
this document

- Database query, to retrieve username, domain, and passwords to handle the authentication
(on PostgreSQL DB)

+ Save in Location Service, which saves the data of the authenticated user (on MongoDB)

« Authenticate, which checks the password

« Lookup and Relay, which looks for the data of the authenticated user, and forwards the call to it

Example of Location Service data on MongoDB:

1 sre_location:PRIMARY> db.location.find()

2 { "_id" : ObjectId("5c3621d6b9dd1601c33e19al"), "username" : "john", "contact"
— : "sip:john@l0.0.9.166:5060;rinstance=21ba7bb0142bc22f", "expires" :
s ISODate("2019-01-09T17:31:17Z"), "q" : -1, "callid" : "92984
<5 MGM3ZmYONzk5MmRKNmM2MmVINjU2YjkzOTZiOWRKZFE", "cseq" : 1, "flags" : @, "
— cflags" : 0, "user_agent" : "X-Lite release 5.3.3 stamp 92984", "received
— " : null, "path" : null, "socket" : "udp:10.0.12.26:5060", "methods" :
< 4831, "last_modified" : ISODate("2019-01-09T16:31:17Z"), "ruid" : "uloc-5
— ¢362091-1c3-1", "instance" : null, "reg_id" : 0, "server_id" : 0, "
< connection_id" : -1, "keepalive" : 0, "partition" : 0 }

Several scripts must be built, to handle authentication, incoming and outgoing calls. In the following
sections, the three basic scripts are described.

4.1 Authentication and SRE registrar

When receiving a SIP REGISTER, we want to identify the subscriber, using:

« the user part of the To header field URI (subscriber name)
« the username in the Authorization header field (subscriber username)

A SIP server can authenticate SIP messages (REGISTER or INVITE messages). When receiving a REGIS-
TER message, the SIP server sends a 401 Unauthorized response with a realm and a nonce (the realm
is the host part of the From URI in the original REGISTER message, for the sake of simplicity it’s better to
have it the same as the domain). The client sends a new REGISTER message with the credentials. This
REGISTER message includes: - the PBX AoR in the To header field - the PBX authentication username in
the Authorization header field - the realm in the Authorization header field

Technical Note 5

S ‘netaxis Registrar Configuration

SOLUTIONS

10

11

12

13

REGISTER sip:netaxis.be SIP/2.0

Via: SIP/2.0/UDP 10.0.9.166:5060;branch=z9hG4bK-524287-1---2e4815090eba6d57

Max-Forwards: 70

Contact: <sip:john@l0.0.9.166:5060;rinstance=80cbcfa222fe3e29>

To: <sip:john@netaxis.be>

From: <sip:john@netaxis.be>;tag=c82b9e5a

Call-ID: 94385MjlLlYzhkMmFKNjM5MjY20TkzYjdmMGRhZTMzN2Ix0Dk

CSeq: 2 REGISTER

Expires: 3600

Allow: OPTIONS, SUBSCRIBE, NOTIFY, INVITE, ACK, CANCEL, BYE, REFER, INFO

User-Agent: X-Lite release 5.4.0 stamp 94385

Authorization: Digest username="authjohn",realm="netaxis.be",nonce="
< XDipwlw4qJcFs81+fUJL6319kMZd8hGL" ,uri="sip:netaxis.be",response="964
<~ ab8f681001ccccOll25c4a477e6c9" ,cnonce="e772a5a83716691d77d39c43f526e0ab",
— Nnc=00000001,qop=auth,algorithm=MD5

Content-Length: 0

Then we want to authenticate the user by checking the response in the Authorization header field with

the subscriber credentials

In the database, the customers table must contain the name, username and password in clear text

or in HA1 format. To build the password in HA1 format we need: the authentication username, the

password and the realm. In linux shell, the command

1

echo -n username:realm:password | md5sum

returns the password in HA1 format. In the examples of this guide, the password in clear text is shown.

There are two new variables in the Call Descriptor:

« authsStatus, tracking if the message has been authenticated

- authStatus = 1 means that the message has been authenticated
- authStatus = 0 means that the message has not been authenticated (default)

+ authUsername, containing the username parameter in the Authorization header field

4.1.1 Simple Service Logic script for registration with authentication

In the picture below is a typical example of registration script.

Technical Note 6

o 'netaxis Registrar Configuration

SOLUTIONS

— 7y e inLocata
— Smen imLoca

au?
= = Bt cored ’)_f'
S e "
A :)M-d:n“u
i (T
it .._CLT S I [/_0 L —

\ /
\—0 ey /
e o ("
Pl [

A REGISTER message reaches SRE, and by default authStatus = 0: the message is not authenticated.
The Sequential Conditions block checks if the message has been already authenticated:

Edit Node

Sequential conditions

Mode name * Description

REGISTER auth?

Conditions
Variable * Operator Value * ~ v I
authStatus vear is 1 r

Since this is the first REGISTER, it is not, therefore authStatus = 0, and the analysis passes to the
Combined Conditions block:
Edit Node

Combined conditions

Mode name * Description

check authUsername

True if

all conditions are met (and)

Conditions
Variable * Operator Value * all | -
authUsername var exists : True var
Variable * Operator Value * ol il
authUsername var does not contain H null

Since it is the first REGISTER, there is no authUsername present yet, and therefore SRE must challenge
the REGISTER: the false exit is taken, and the block Authenticate is sending back the 401 Unauthorized

Technical Note 7

S ‘netaxis Registrar Configuration

SOLUTIONS

error message. The client sends again the REGISTER message, with the Authorization header. At this
stage, the Combined Conditions block is reached again, but this time authUsername exists and it is
different from NULL, and therefore the Database Query block is selected (see the picture in the next

page):

» The authUsername extracted from the Authentication header is searched inside the database
table customers (customers.username)

« If there is a match, the password stored in the database is saved in the variable password and
the customer’s name is saved in the variable customer_name

After the extraction of the data from the database (successful or not), the Authenticate block acts
as follows: - If the authentication fails, the SRE Registrar will challenge the subscriber (as the first
REGISTER) - If the authentication succeeds, the SRE sets the parameter authStatus to 1

At this point, the script s re-executed again (even without a new REGISTER message), this time following
the route with authStatus = 1.

So, considering what described above, the script is used 3 times: - first time for generating the 401
Unauthorized message with the challenge - second time to authenticate the message - third time to
save the binding in the Location Service

Edit Node

Authenticate

Node name * Description

Check password

Password *

password

Password in HA1 Fformat

Note

the Authenticate block is configured as in the next picture: the password variable is simply pass-
word (as extracted by the database query node) and there is the flag to instruct SRE to handle the

password as HAL encrypted or not.

Technical Note 8

o ’netaxis Registrar Configuration

SOLUTIONS

Edit Node

Authenticate

Mode name * Description

Check password

Password *

password var

Password in HA1 format

Note

As the SRE handles a SIP message three times in a row, we need to increase the maximum number
of occurrences of same calling/called/call-id to avoid a 482 Loop Detected condition.

Settings
Liprmen Mansger CONFIGLIRATION PARAMETEAS
Mumber of proceuing
- thrpads
aiLewe
Florm $1sLe Pachiss
o manirmem ramar of

state Eransitigns

Banirtremn sarmtar of
scowEnces of rame
callingfoatied

LT APY Prownianing

HITP Procesing
e Wirdaw [in weel ta
sl orcurences o

same callisgfeatled

- Maimm s o

Effw ehied of damE
calling fralied call-id
Sl Wirdow [in se0t) 1o
conilded otcurences of

rame

calliag fralbedicall-id

SHTP

Code Profiing
Call dercniptes called Rrcposrit- LS urian v [pur et invthude
iem

Call sdmissicn control
purge timegut (secy]

4.2 Call authentication

After a registration, a user sooner or later will place a call. The call is initiated with an INVITE message,
which must be authenticated as the REGISTER, to authorize the execution of the call. When receiving a
first INVITE message, the SIP server sends back a 407 Proxy Authentication Required response with

Technical Note 9

S ‘netaxis Registrar Configuration

SOLUTIONS

arealm and a nonce (the realm is the host part of the From URI in the original INVITE message). The
client sends a new INVITE message with the credentials. This INVITE message includes:

« The PBX authentication username in the Authorization header field
« The realm in the Authorization header field

The following is an authenticated INVITE, containing the Proxy-Authorization header.

1 INVITE sip:6756757@netaxis.be SIP/2.0

2 Via: SIP/2.0/UDP 10.0.9.166:5060;branch=z9hG4bK-524287-1---f726055e5bd50f2a

3 Max-Forwards: 70

4 Contact: <sip:john@l0.0.9.166:5060>

5 To: <sip:6756757@netaxis.be>

6 From: <sip:john@netaxis.be>;tag=db3e0038

7 Call-ID: 94385MjJKMGMyZDFhZWYxYTL1IMjQONWY1Y2UyN2IzNzg5MwWY

g CSeq: 2 INVITE

s Allow: OPTIONS, SUBSCRIBE, NOTIFY, INVITE, ACK, CANCEL, BYE, REFER, INFO

10 Content-Type: application/sdp

1 Proxy-Authorization: Digest username="authjohn",realm="netaxis.be",nonce="
— XD2d11lw9nGp/4owDSHCj+nwRz5HURCLC" ,uri="sip:6756757@netaxis.be",response="
— bdd367676f43619efdlee535¢c728ef80",cnonce="834188
< b82cd53bfaee8eaf7clcafelf9",nc=00000001,qop=auth,algorithm=MD5

12 Supported: replaces

N

4.2.1 Outgoing call: simple script for a call with authentication

This is the typical case of a call placed by a customer’s user, behind the PBX registered on SRE. In the
picture below a combination of the registration and INVITE authentication process is shown.

L EOCHTTE s | i
ey = ==

fi

Fltsioana 5.ev5
-

ey it S —

The (sub)service logic presented above is a subservice logic used only for the registration and authenti-
cation. When the subservice logic is recalled, it checks if the method is a REGISTER or an INVITE: in case
of registration and the authentication is successful (authStatus == 1), the user’s data must be saved in

Technical Note 10

o 'netaxis Registrar Configuration

SOLUTIONS

the location register database (save in location service block); in case of a call, and the authentication
is successful, the call must continue in the SRE service logic (exit node in orange). That’s the only
difference: the other blocks are valid both for the registration and the call authentication.

The combined conditions block checks if the message has been already authenticated or not, checking
the variable authCondition, as for the REGISTER message.
Mode name * Description
IMNVITE auth?

True if

all conditions are met (and)

Ak

Conditions

Variable * Operator Value * il -

authStatus ar s - 1 var

If the INVITE is not yet authenticated, the combined conditions block checks if the authUsername
is already available or not, so for the REGISTER message. If the authUsername is not available, the
INVITE message must be challenged: this is done by the Authenticate block, as for the REGISTER
message.

The user will send a new INVITE message with the Authentication header. The variabile authCondition
is still 0, but this time the authUsername is available, therefore the block Database Query is taken.
Similarly to what was happening during the registration, the username taken from the Authentication
is searched in the customer’s table.

In the example below, authUsername is always identical to the fromUsername, and therefore the
search is done with the fromUsername, but it is not usually happening

Technical Note 11

o ’netaxis Registrar Configuration

SOLUTIONS

Edit Node
Database query

Mode name * Description

retrieve password

Tables
paultest.pub_holiday (pub_holiday)
paultest.ted_schedule (tod_schedule)
registration.customer_numbers (customer_numbers)
registration.customers (customers)

Hold ctrl to select several tables.

Extract Fields

Field Store into * all] -
ouskomers. passwond 5 password

Field Store into * M v
cuskomers.name S customer_name

Tables joins

Except the First join, the left table in a join must have been previously used as a left or right table in a previous jein. Several joins with the same left and right

tables can be configured sequentially to build multiple conditions For the same join
Conditions
Field Operator Value * A VK

customers.username is authUsername e

Conditions logic

Ak

all conditions are met (and)

SRE compares the password of the database with the password in the SIP message, using the Authen-
ticate block:

« if the authentication fails, SRE will challenge the subscriber again
« If the authentication succeeds, SRE sets the parameter authStatus to 1

At this point, the script is reused again (even without a new INVITE message), this time following the
route with authStatus = 1: the INVITE is authenticated, and the call can proceed.

So, considering what described above, the script is used 3 times: - first time for generating the 407
Proxy Authentication Required with the challenge - second time to authenticate the message - third
time to proceed with the routing of the INVITE message

Technical Note 12

o 'netaxis Registrar Configuration

SOLUTIONS

4.2.2 Incoming call: lookup in location services

In case of incoming call from PSTN to a registered user, SRE must look for the called number, verify
that it is effectively registered, and then route the call according to the registration. The script below is
showing such example:

] Wagater . s tusine

T e g 7 Dkt ey
// e o —
| el a4 / oo P Lirtliseg: soel Mty
- Enrncd LI - et el S . N i
Ve — - . i]
-, eawwet peelet /. >) Pl g e o R
e B e 4 i B 0 " et ey P /
o — A e st =
s b [, e
\ o
| \
A e
B GO N Fm et

The first 3 blocks are used only to determine if the user is calling from PSTN or from the PBX, using the
tgrp parameter of the Contact header only, and it is not affecting the lookup in the location services.
The location services part is starting from the first Database Query, where SRE is looking for the called
phone number into its database: the called number present in the Request URI is searched in the
column number of the table customer_numbers (customers_numbers) and if it is successful, the AoR
is stored, and used to build the new Request-URI, which is passed to the Lookup in location services
block. Within this block, SRE will look for the Contact received during the registration phase and it
relays the call with the Contact in the Request URI.

The second Database query node is similar to the previous one, but it is also checking the case the
phone number is entered as number range (and therefore it is done the long prefix match search
instead of the precise search). For the rest, nothing changes. If no number is found in the database, the
callis rejected with a 404 Not Found message.

Technical Note 13

o ’netaxis Registrar Configuration

SOLUTIONS

Edit Node
Database query

Node name * Description

Retrieve customer exact

Tables
solunonl_routing.customer_numbers (customer_numbers)
solunonl_routing.customers (customers)
solunonl_test_routing.customer_numbers (oustomer_numbers)
solunonl_test_routing.customers (customers)

Hold ctrl ko select several tables

Extract fields

Field Store into * ~ v B
CLUSEOMErs.aor H aod
Tables joins
Left table field Operator Right table field A v (X
customer_numbers customer_id H s v customers.id v
Except the first join, the left table in a join must have been previously used as a left or right table in a previous join. Several joins with the same Lleft and right
tables can be configured sequentially to build multiple conditions for the same join.
Conditions
Field Operator Value * adl |
customer_numbers.number H 3 d called var
Field Operator Value * v
customer_numbers.is_range = is o False var

Conditions logic

all conditions are met (and)

4.3 Call Screening

The goalisto check thatthe CLIand the credentialsin the INVITE message belong to the same subscriber.
The calling party number can be in several SIP header fields, and there is a priority (some header fields
are more relevant than other ones). In the script below we use the following rule: the header fields
containing the CLI in order of priority (highest priority first) are: - Diversion - P-Asserted-Identity -
Remote-Party-ID - From

Technical Note 14

b)’netaxis Registrar Configuration

SOLUTIONS

T Eriact £ header
L)
‘entraction fakore (1

Exiract TP haader

satracion fakes (1

wtratton tukes ()

O wractfrom
Extract SiP haader

Here is an example on how to use the node “Extract SIP Header” to retrieve the SIP URI in the Remote-
Party-ID header field:

Mode narme

extractAPID

Dvescription

Extract SIF Header Fields
Extract Store into

Remote-Party-1D chiliRi

The Database query node can be used to check that the CLI and the authentication username belong
to the same subscriber, and to retrieve the subscriber password in a variable.

Technical Note 15

S ’netaxis Registrar Configuration

SOLUTIONS

MNode name

prtHAL Paspaordicrd NVITE

Description
Fields
From tablbe Extract Stode into
Sl ik ¥ hal _passveand ¥ halpassword multiple results
Joinis
Left table Fighd Cperator Right table Field
sl ribegr | d | i | did - subrcriber_id
Conditions
Table Field Operator Value
s ribser —~ UsErmame —~ i — Suthi eEmarse
Table Fighd Operator Walue
did | namberpretn | 1% the longest prefs match ol & fa)

5 Appendix 1

5.1 Prerequisites

The kamailio-mongodb package must be installed before the configuration described in the next
section: it contains the library db_mongodb.so which is mandatory to handle the registration.

In case the user s installing the package on a server without connection to the sw repositories, consider
the following dependencies: - libbson - libicu - mongo-c-driver-libs - pgdg-libmongoc

5.2 Sample configuration of Kamailio

To support the authentication, the file kamailio.cfg in /etc/kamailio must be edited as in the example
below.

Technical Note 16

o 'netaxis Registrar Configuration

SOLUTIONS

1 # **x To run in debug mode:
2 # - define WITH_SREREGISTRAR
3 #!define WITH_SREREGISTRAR

6 #!ifdef WITH_MONGODB
7 # - database URL - used to connect to database server by modules such
s # as: auth_db, acc, usrloc, a.s.o.
9 #!ifndef DBURL
10 #!define DBURL "mongodb://10.0.12.146,10.0.12.147,10.0.12.148/kamailio?
< replicaSet=sre_location&slaveOk=true&readPreference=primaryPreferred"
u #lendif
12 #lendif

Where 10.0.12.146,10.0.12.147,10.0.12.148 are 3 IP addresses of the MongoDB cluster of this example.

By default in kamailio the domain is the IP address of the SRE Registrar server, but we can change it by
setting the alias parameter in kamailio.cfg:

1 /* add local domain aliases */
2 alias="netaxis.be"

Then restart kamailio

1 [root@sre-reg ~]# service kamailio restart

5.3 MongoDB installation

Mongodb version 4.x and 5.x are supported from SRE release 3.2.10

Onthethree servers for Mongo DB, execute the following procedure. Create a /etc/yum.repos.d/mongodb-
org-3.6.repo file so that you can install MongoDB directly, using yum. Use the following repository
file:

1 [mongodb-org-3.6]

2 name=MongoDB Repository

3 baseurl=https://repo.mongodb.org/yum/redhat/7/mongodb-org/3.6/x86_64/
4 gpgcheck=1

5 enabled=1

6 gpgkey=https://www.mongodb.org/static/pgp/server-3.6.asc

To install the latest stable version of MongoDB, issue the following command:

1 sudo yum install -y mongodb-org-3.6.23 mongodb-org-server-3.6.23 mongodb-org-
— shell-3.6.23 mongodb-org-mongos-3.6.23 mongodb-org-tools-3.6.23

Technical Note 17

S ‘netaxis Registrar Configuration

SOLUTIONS

You can start the mongod process by issuing the following command:

1 sudo service mongod start

You can verify that the mongod process has started successfully by checking the contents of the log file
at /var/log/mongodb/mongod.log for a line reading

1 [initandlisten] waiting for connections on port <port>

where <port> is the port configured in /etc/mongod.conf, 27017 by default.

You can optionally ensure that MongoDB will start following a system reboot by issuing the following
command:

1 sudo chkconfig mongod on

5.4 MongoDB replica set configuration

The databases will be stored in /data/sre/location. The name of the replica Set is set to sre_location.

1 [root@mongodbl ~]# cat /etc/mongod.conf
2 # Where and how to store data.

3 storage:

4 dbPath: /data/sre/location

s journal:

6 enabled: true
7 # network interfaces
8 het:

9 port: 27017
bindIp: 0.0.0.0

=
1S)

11

12

-

3 f#fsecurity:

14

=

s #operationProfiling:

16

-
=

replication:
18 replSetName: sre_location

On the three servers, create the directory, change the owner and restart mongod

1 mkdir -p /data/sre/location
2 chown mongod.mongod /data/sre/location
3 service mongod restart

On one server, type “mongo” and then initiate the replicaset

Technical Note 18

S ‘netaxis Registrar Configuration

SOLUTIONS

1 rs.initiate({_id : "sre_location", members: [{ _id: 0, host: "10.0.12.146" },{
<~ _id: 1, host: "10.0.12.147" }, { _id: 2, host: "10.0.12.148" }1})

Where 10.0.12.146,10.0.12.147,10.0.12.148 are 3 IP addresses of the MongoDB cluster of this example.

5.5 MongoDB replica set configuration with an Arbiter

The databases will be stored in /data/sre/location. The name of the replica Set is set to sre_location.
On the two Mongo DB.

1 [root@mongodbl ~]# cat /etc/mongod.conf
2 # Where and how to store data.
3 storage:

4 dbPath: /data/sre/location

5 journal:

6 enabled: true

7 # network interfaces

8 net:

9 port: 27017

10 bindIp: 0.0.0.0

11

12

13 #security:

14

15 #operationProfiling:

16

17 replication:

replSetName: sre_location

=
®

On the Arbiter

1 [root@mongodb3 ~]# cat /etc/mongod.conf
2 # Where and how to store data.
3 storage:

4 dbPath: /data/sre/arb

5 journal:

6 enabled: true

7 # network interfaces

8 net:

9 port: 27017

10 bindIp: 0.0.0.0

11

12

3 #security:

—

14

Technical Note 19

S ‘netaxis Registrar Configuration

SOLUTIONS

15 #operationProfiling:

16

17 replication:

18 replSetName: sre_location

On the two mongo DB servers, create the directory, change the owner and restart mongod

1 mkdir -p /data/sre/location
2 chown mongod.mongod /data/sre/location
3 service mongod restart

On one server, type “mongo” and then initiate the replicaset

1 rs.initiate({_id : "sre_location", members: [{ _id: 0, host: "10.0.12.146" }]13})

Add a second node on the same server

1 rs.add({ _id: 1, host: "10.0.12.147" })

Then add the arbiter on the same server

1 rs.addArb("10.0.12.148")

Where 10.0.12.146 is the primary server, 10.0.12.147 is the secondary server, and 10.0.12.148 is the
arbiter of this example.

Note

The status of the replication can be verified with the command rs.status() within the mongo
interface.

5.6 Populating MongoDB

Create the database kamailio, and the collection “version”. Inside the collection “version”, insert a
document for each table required by Kamailio: the tables location and location_attrs are required with
table_version 9 (with kamailio version 5.x) or 8 (with kamailio version 4.x) and 1 respectively.

Supposing that the configuration is done with kamailio 5.x. the following commands must be issued
on the mongo interface of the primary server:

1 sre_location:PRIMARY> use kamailio

2 sre_location:PRIMARY> db.createCollection("version")

3 sre_location:PRIMARY> show collections

4 version

5 sre_location:PRIMARY> db.getCollection("version").insert({table_name: "location
— ", table_version: NumberInt(9)1})

Technical Note 20

o 'netaxis Registrar Configuration

SOLUTIONS

6 sre_location:PRIMARY> db.getCollection("version").insert({table_name: "
< Tlocation_attrs", table_version: NumberInt(1l)})

6 Appendix 2

6.1 Basic registration Service Logic

e Awthenteaty
ot _'__‘_'_'__'____d-__,_,_—o-""
aima - m—
)
O reivieve password 'IlllII
Diitisbuledas ity ‘/{l
racond found (|
oy pecoed [

Below the exported version of the service logic (for release 3.2 and higher). To import it, copy/paste it
into a text editor, rename the file with the extension slid and import it into SRE service logic editor.

1 {

2 "24": {

3 "nodes": {

4 Mt {

5 "id": 2,

6 "name": "save in location services",
7 "type": "output.nit.registrar.savelLocationService",
8 "description": "",

9 "values": {},

10 "archived": false,

1 "x": 650,

12 "y": 100

13 1,

14 "o": {

15 "id": o,

16 "name'": '"Start",

17 "type": "enter.start",

18 "description": "Start",

19 "values": {

Technical Note 21

~ 'netaxis

SOLUTIONS

Registrar Configuration

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

"next": 1
I
"archived": false,
"x": 100,
"y': 100
}s
"t {
"id": 1,
"name": "REGISTER auth?",

"type": "analysis.sequentialConditions",

"description": "",
"values": {
"conditions": [{
"variable": "authStatus",
"operator": "dis",
llvalue": lllll,
"ifTrue": 2
1,
"fallback": 3
1,
"archived": false,
"x": 300,
lly": 100
1,
n3m. {
nidn: 3,
"name": "check authUsername",
"type": "analysis.condition",
"description": "",
"values": {
"log‘ic": "any",
"conditions": [{
"variable": "authUsername",
"operator": "exists",
"value": "True"
s {
"variable": "authUsername",
"operator": '"doesNotExist",
"value": "null"
,
"ifTrue": 5,
"ifFalse": 4
1,
"archived": false,
"x": 550,
lly": 200

Technical Note

22

~ 'netaxis

SOLUTIONS

Registrar Configuration

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

I
|l4ll:

},
|l5l|:

{
"id": 4,
"name": "Check Password",

"type": "output.nit.registrar.authenticate",

"description": "",

"values": {
"password": "password",
Ilhalll: nn

1,

"archived": false,

"x": 1000,

lly": 200

{
"qd": 5,
"name": "retrieve password",
"type": "query.queryDatabaseGeneric",
"description": "",
"values": {
"tables": ["registration.customers"],
"fields": [{
"field": "customers.password",
"storeInto": "password"
s, {
"field": "customers.name",
"storeInto": "customer_name"
1,
"joins": [],
"conditions": [{
"field": "customers.username",
"operator": "is",
"value": "authUsername"
1,
"logic": "and",
"orderBy": [],
"offset": "",
"joinType": "JOIN",
"fetch": "first",
"storeIntoRecordsList": "",
"jfRecordFound": 4,
"jfnoRecordFound": 4,
"caching": ©
}7
"archived": false,
"x": 800,

Technical Note

23

S)’netaxis

SOLUTIONS

Registrar Configuration

112
113
114
115
116

117 1

18 }

"y": 300

I
"name": "registration",
"description": ""

6.2 Database entry example

NLBATE
. 1 sea
narg] avwerd
Hptme e Frmon 1235
Showing 1 b of | et
RESLTS
Dow| B § kv
A e
- bt L BRI

Thoming A0 | of 1 mires

e

aCrgT e

Ldk

408 Bphamey sranted

Technical Note

24

b)’netaxis Registrar Configuration

SOLUTIONS

6.3 Call flow example for REGISTRATION

REGE [
18, 1. 1E. 892 5TEBE Le.1.18. 16315060 Y d .8 3L | B ERE hs 2 ANGABKP 1620 La&c tROAEGIGIVATFRRLTFORT INSK

L3z ; tageRHu1KT EndvPa LA TR das Ak ZL1
>

BECRIBE, MOTIFY, REFER, HESSAGE, OPTIONS

181,08, 1835080 Y ;. o L B T HRGABKP 2 L TRQaIMSK; P ived=ll. 1. 1689

BETBAIALRT I DABCER

vetanis.be”, nonces"TvpHiGLEARSKEh Tt Yuwkgeg iliry 154rBb™, gqops“asuth™

REG B
10.1. 18, B9 5TE0E 18,118, 1635068 ¥ g BBE; FRAFT | b FARCHS P NGB SAT £ 143 o — NN 1 KL MO BANT

PESE
RETAR1S. bew) vaghiie LK TERE v LA fRAN S AR T Bc ZTOFLL
AL, B

b=, uris“sip:i#.1.1
ddprannl

18,1, 18, B5; STERG 100,10, 16015060

7 Troubleshooting

7.1 MongoDB

By default, Kamailio can manage registrations in-memory on its own. To ensure that Kamailio is
properly connected to the MongoDB database and is populating records for persistence, several checks
can be performed. By establishing a connection to the MongoDB Kamailio database, it is possible to
confirm that Kamailio has created the location table, which stores information about the registered
endpoints.

{8} [root@sre4-cpl ~]# mongo kamailio MongoDB shell version v5.0.23 connecting to:
< mongodb://127.0.0.1:27017/kamailio?compressors=disabled&gssapiServiceName=mongodb
<~ Implicit session: session { "id" : UUID("745bc7f5-fac2-4f64-abca-c892fd9ca0d71

< ") } MongoDB server version: 5.0.23 ... sre_location:PRIMARY> show collections

— location version

Technical Note 25

S ‘netaxis Registrar Configuration

SOLUTIONS

Itis also possible to query the location table as follows:

1 sre_location:SECONDARY> db.location.find()
2 { "_id" : ObjectId("654551b634ce7535954f8dal"), "username"

"john", "contact"

"sip:john-kbg8bf86fdlkf@172.18.2.111:5060;transport=tcp", "expires"

N
— ISODate("2024-02-22T08:54:06Z"), "q" : -1, "callid" "

— 13579672010112023113959@117.114.6.30", "cseq" : 119577, "flags" : 0, "

— cflags" : 0, "user_agent" : "n/a", "received" : null, "path" : null, "

— socket" : "tcp:172.16.3.82:5061", "methods" : 7935, "last_modified"

< ISODate("2024-02-22T08:49:06Z"), "ruid" : "uloc-649e7b98-3595-2", "

— dnstance" : null, "reg_id" : 0, "server_id" : 0, "connection_id" : 776, "
— keepalive" : 0, "partition" : 0 }

If Kamailio does not populate MongoDB, it may be worth checking the Kamailio logs, which are, by
default, located in /var/log/messages. Examine the lines containing “mongodb” to find indications
that the Kamailio MongoDB module is initializing and opening connections to the MongoDB URL as

configured in kamailio.cfg:

1 [root@sre4-cpl ~]# grep mongodb /var/log/messages

2

< sr_module.c:988]: init_mod(): db_mongodb

4 Feb 21 10:27:40 sre4-cpl kamailio[2332896]: 0(2332896) DEBUG:

< db_mongodb_mod.c:96]: mod_init(): module initializing

< readPreference=secondaryPreferred

3 Feb 21 10:27:40 sre4-cpl kamailio[2332896]: 0(2332896) DEBUG:

6 Feb 21 10:27:42 sre4-cpl kamailio[2332896]: 0(2332896) DEBUG:
— mongodb_connection.c:55]: db_mongodb_new_connection():
<~ : mongodb://10.1.0.192,10.1.0.193/kamailio?replicaSet=

<core> [core/
db_mongodb [
db_mongodb [

connection open to
sre_location&

Technical Note

26

	Introduction
	Terminology

	Sample configuration for registering a user
	Database for the SRE Registrar
	Table customers
	Table customer_numbers
	Configuration example

	Service Logic scripts
	Authentication and SRE registrar
	Simple Service Logic script for registration with authentication

	Call authentication
	Outgoing call: simple script for a call with authentication
	Incoming call: lookup in location services

	Call Screening

	Appendix 1
	Prerequisites
	Sample configuration of Kamailio
	MongoDB installation
	MongoDB replica set configuration
	MongoDB replica set configuration with an Arbiter
	Populating MongoDB

	Appendix 2
	Basic registration Service Logic
	Database entry example
	Call flow example for REGISTRATION

	Troubleshooting
	MongoDB

