
Registrar Configuration

Technical Note

Registrar Configuration

Table of Contents

1 Introduction 2
1.1 Terminology . 2

2 Sample configuration for registering a user 2

3 Database for the SRE Registrar 3
3.1 Table customers . 3
3.2 Table customer_numbers . 4

3.2.1 Configuration example . 4

4 Service Logic scripts 5
4.1 Authentication and SRE registrar . 5

4.1.1 Simple Service Logic script for registration with authentication 6
4.2 Call authentication . 9

4.2.1 Outgoing call: simple script for a call with authentication 10
4.2.2 Incoming call: lookup in location services . 13

4.3 Call Screening . 14

5 Appendix 1 16
5.1 Prerequisites . 16
5.2 Sample configuration of Kamailio . 16
5.3 MongoDB installation . 17
5.4 MongoDB replica set configuration . 18
5.5 MongoDB replica set configuration with an Arbiter . 19
5.6 Populating MongoDB . 20

6 Appendix 2 21
6.1 Basic registration Service Logic . 21
6.2 Database entry example . 24
6.3 Call flow example for REGISTRATION . 25

7 Troubleshooting 25
7.1 MongoDB . 25

Technical Note 1

Registrar Configuration

1 Introduction

The typical use case of SRE configured as registrar is where a customer has a SIP PBX which must register
to a Service Provider, and the Service Provider has an Access SBC and an SRE platform. The Registrar and
Digest Authentication feature needs to be enabled on the SRE platform via the registrar license so that
each Call Processor Instance can act as a SIP Registrar and can authenticate SIP messages. Registration
data (Location Service) is dynamic and is stored in a MongoDB database that can be distributed on
multiple servers with a mechanism preventing split-brain. Typically, the Mongo database will be
deployed as a three-member replica set. Besides the typical SRE requirements, some additional
requirements related to MongoDB must be fulfilled.

1.1 Terminology

• Domain. This is the domain of the SIP Registrar/Proxy server. It is unique for the complete SRE
platform. By default in Kamailio this is the IP address of the SRE Registrar server, but it can be
changed by setting the alias parameter in kamailio.cfg:

1 /* add local domain aliases */
2 alias="netaxis.be"

A restart of Kamailio is required.

• AoR (Address of Record). This is the URI identifying the PBX, used as identifier by the PBX to
register. As the domain is unique, we usually only work with the user part of the Address of
Record (in the SRE data model and the script).

• PBX Contact. This is the URI of the PBX containing the IP address/port of the PBX.

• Location Service. It contains bindings created during PBX registration: a binding is a couple
(PBX AoR, Contact).

• PBX DIDs. Direct Inward Dialing numbers, numbers behind the PBX

2 Sample configuration for registering a user

Use a SIP client of your choice (for example X-Lite), and configure it with the typical information:

• User ID is the user part of the PBX AoR
• Domain is the SRE Registrar domain
• Address is the outbound proxy (SBC, . . .)

Technical Note 2

Registrar Configuration

In the REGISTER message, the following information is observed:

• The domain, in the Request URI of the SIP REGISTER messages sent by the PBX
• The Address of Record of the PBX, in the TO header field
• The Contact field, in the CONTACT header

1 REGISTER sip:netaxis.be SIP/2.0
2 Via: SIP/2.0/UDP 10.0.9.166:5060;branch=z9hG4bK-524287-1---3f6c1d404b0e8958
3 Max-Forwards: 70
4 Contact: <sip:john@10.0.9.166:5060;rinstance=21ba7bb0142bc22f>
5 To: <sip:john@netaxis.be>
6 From: <sip:john@netaxis.be>;tag=c8243546
7 Call-ID: 92984MGM3ZmY0Nzk5MmRkNmM2MmVlNjU2YjkzOTZiOWRkZjE
8 CSeq: 1 REGISTER
9 Expires: 3600

10 Allow: SUBSCRIBE, NOTIFY, INVITE, ACK, CANCEL, BYE, REFER, INFO, OPTIONS
11 User-Agent: X-Lite release 5.3.3 stamp 92984
12 Content-Length: 0

3 Database for the SRE Registrar

The database can vary depending on the requirements of the customer, but as minimum, it should
contain the following tables (names of the tables and fields can be customized)

3.1 Table customers

A Subscriber represents a PBX that registers to the SRE Registrar. Each Subscriber hosts several DIDs.

Technical Note 3

Registrar Configuration

3.2 Table customer_numbers

It contains the numbers belonging to the customer. The column customer_id is a foreign key of the
table customers.

Note: the boolean is_range is not strictly necessary. The registration itself is working also without.

3.2.1 Configuration example

Entry of table customers

Entry of table customer_numbers

Technical Note 4

Registrar Configuration

4 Service Logic scripts

A basic service logic script that needs to handle authentication requires at least the following blocks:

• Sequential and Combined conditions blocks, to be used in several steps, are described later in
this document

• Database query, to retrieve username, domain, and passwords to handle the authentication
(on PostgreSQL DB)

• Save in Location Service, which saves the data of the authenticated user (on MongoDB)
• Authenticate, which checks the password
• Lookup and Relay, which looks for the data of the authenticated user, and forwards the call to it

Example of Location Service data on MongoDB:

1 sre_location:PRIMARY> db.location.find()
2 { "_id" : ObjectId("5c3621d6b9dd1601c33e19a1"), "username" : "john", "contact"

↪→ : "sip:john@10.0.9.166:5060;rinstance=21ba7bb0142bc22f", "expires" :
↪→ ISODate("2019-01-09T17:31:17Z"), "q" : -1, "callid" : "92984
↪→ MGM3ZmY0Nzk5MmRkNmM2MmVlNjU2YjkzOTZiOWRkZjE", "cseq" : 1, "flags" : 0, "
↪→ cflags" : 0, "user_agent" : "X-Lite release 5.3.3 stamp 92984", "received
↪→ " : null, "path" : null, "socket" : "udp:10.0.12.26:5060", "methods" :
↪→ 4831, "last_modified" : ISODate("2019-01-09T16:31:17Z"), "ruid" : "uloc-5
↪→ c362091-1c3-1", "instance" : null, "reg_id" : 0, "server_id" : 0, "
↪→ connection_id" : -1, "keepalive" : 0, "partition" : 0 }

Several scripts must be built, to handle authentication, incoming and outgoing calls. In the following
sections, the three basic scripts are described.

4.1 Authentication and SRE registrar

When receiving a SIP REGISTER, we want to identify the subscriber, using:

• the user part of the To header field URI (subscriber name)
• the username in the Authorization header field (subscriber username)

A SIP server can authenticate SIP messages (REGISTER or INVITE messages). When receiving a REGIS-
TER message, the SIP server sends a 401 Unauthorized response with a realm and a nonce (the realm
is the host part of the From URI in the original REGISTER message, for the sake of simplicity it’s better to
have it the same as the domain). The client sends a new REGISTER message with the credentials. This
REGISTER message includes: - the PBX AoR in the To header field - the PBX authentication username in
the Authorization header field - the realm in the Authorization header field

Technical Note 5

Registrar Configuration

1 REGISTER sip:netaxis.be SIP/2.0
2 Via: SIP/2.0/UDP 10.0.9.166:5060;branch=z9hG4bK-524287-1---2e4815090eba6d57
3 Max-Forwards: 70
4 Contact: <sip:john@10.0.9.166:5060;rinstance=80cbcfa222fe3e29>
5 To: <sip:john@netaxis.be>
6 From: <sip:john@netaxis.be>;tag=c82b9e5a
7 Call-ID: 94385MjllYzhkMmFkNjM5MjY2OTkzYjdmMGRhZTMzN2IxODk
8 CSeq: 2 REGISTER
9 Expires: 3600

10 Allow: OPTIONS, SUBSCRIBE, NOTIFY, INVITE, ACK, CANCEL, BYE, REFER, INFO
11 User-Agent: X-Lite release 5.4.0 stamp 94385
12 Authorization: Digest username="authjohn",realm="netaxis.be",nonce="

↪→ XDipw1w4qJcFs8l+fUJL63l9kMZd8hGL",uri="sip:netaxis.be",response="964
↪→ a58f681001cccc01125c4a477e6c9",cnonce="e772a5a83716691d77d39c43f526e0ab",
↪→ nc=00000001,qop=auth,algorithm=MD5

13 Content-Length: 0

Then we want to authenticate the user by checking the response in the Authorization header field with
the subscriber credentials

In the database, the customers table must contain the name, username and password in clear text
or in HA1 format. To build the password in HA1 format we need: the authentication username, the
password and the realm. In linux shell, the command

1 echo -n username:realm:password | md5sum

returns the password in HA1 format. In the examples of this guide, the password in clear text is shown.

There are two new variables in the Call Descriptor:

• authStatus, tracking if the message has been authenticated

– authStatus = 1 means that the message has been authenticated
– authStatus = 0 means that the message has not been authenticated (default)

• authUsername, containing the username parameter in the Authorization header field

4.1.1 Simple Service Logic script for registration with authentication

In the picture below is a typical example of registration script.

Technical Note 6

Registrar Configuration

A REGISTER message reaches SRE, and by default authStatus = 0: the message is not authenticated.
The Sequential Conditions block checks if the message has been already authenticated:

Since this is the first REGISTER, it is not, therefore authStatus = 0, and the analysis passes to the
Combined Conditions block:

Since it is the first REGISTER, there is no authUsername present yet, and therefore SRE must challenge
the REGISTER: the false exit is taken, and the block Authenticate is sending back the 401 Unauthorized

Technical Note 7

Registrar Configuration

error message. The client sends again the REGISTER message, with the Authorization header. At this
stage, the Combined Conditions block is reached again, but this time authUsername exists and it is
different from NULL, and therefore the Database Query block is selected (see the picture in the next
page):

• The authUsername extracted from the Authentication header is searched inside the database
table customers (customers.username)

• If there is a match, the password stored in the database is saved in the variable password and
the customer’s name is saved in the variable customer_name

After the extraction of the data from the database (successful or not), the Authenticate block acts
as follows: - If the authentication fails, the SRE Registrar will challenge the subscriber (as the first
REGISTER) - If the authentication succeeds, the SRE sets the parameter authStatus to 1

At this point, the script is re-executed again (even without a new REGISTER message), this time following
the route with authStatus = 1.

So, considering what described above, the script is used 3 times: - first time for generating the 401
Unauthorized message with the challenge - second time to authenticate the message - third time to
save the binding in the Location Service

Note

the Authenticate block is configured as in the next picture: the password variable is simply pass-
word (as extracted by the database query node) and there is the flag to instruct SRE to handle the
password as HA1 encrypted or not.

Technical Note 8

Registrar Configuration

Note

As the SRE handles a SIP message three times in a row, we need to increase the maximum number
of occurrences of same calling/called/call-id to avoid a 482 Loop Detected condition.

4.2 Call authentication

After a registration, a user sooner or later will place a call. The call is initiated with an INVITE message,
which must be authenticated as the REGISTER, to authorize the execution of the call. When receiving a
first INVITE message, the SIP server sends back a 407 Proxy Authentication Required response with

Technical Note 9

Registrar Configuration

a realm and a nonce (the realm is the host part of the From URI in the original INVITE message). The
client sends a new INVITE message with the credentials. This INVITE message includes:

• The PBX authentication username in the Authorization header field
• The realm in the Authorization header field

The following is an authenticated INVITE, containing the Proxy-Authorization header.

1 INVITE sip:6756757@netaxis.be SIP/2.0
2 Via: SIP/2.0/UDP 10.0.9.166:5060;branch=z9hG4bK-524287-1---f726055e5bd50f2a
3 Max-Forwards: 70
4 Contact: <sip:john@10.0.9.166:5060>
5 To: <sip:6756757@netaxis.be>
6 From: <sip:john@netaxis.be>;tag=db3e0038
7 Call-ID: 94385MjJkMGMyZDFhZWYxYTllMjQ0NWY1Y2UyN2IzNzg5MWY
8 CSeq: 2 INVITE
9 Allow: OPTIONS, SUBSCRIBE, NOTIFY, INVITE, ACK, CANCEL, BYE, REFER, INFO

10 Content-Type: application/sdp
11 Proxy-Authorization: Digest username="authjohn",realm="netaxis.be",nonce="

↪→ XD2dllw9nGp/4owDSHCj+nwRz5HURClC",uri="sip:6756757@netaxis.be",response="
↪→ bdd367676f43619efd1ee535c728ef80",cnonce="834188
↪→ b82cd53bfaee8eaf7c1cafe1f9",nc=00000001,qop=auth,algorithm=MD5

12 Supported: replaces

4.2.1 Outgoing call: simple script for a call with authentication

This is the typical case of a call placed by a customer’s user, behind the PBX registered on SRE. In the
picture below a combination of the registration and INVITE authentication process is shown.

The (sub)service logic presented above is a subservice logic used only for the registration and authenti-
cation. When the subservice logic is recalled, it checks if the method is a REGISTER or an INVITE: in case
of registration and the authentication is successful (authStatus == 1), the user’s data must be saved in

Technical Note 10

Registrar Configuration

the location register database (save in location service block); in case of a call, and the authentication
is successful, the call must continue in the SRE service logic (exit node in orange). That’s the only
difference: the other blocks are valid both for the registration and the call authentication.

The combined conditions block checks if the message has been already authenticated or not, checking
the variable authCondition, as for the REGISTER message.

If the INVITE is not yet authenticated, the combined conditions block checks if the authUsername
is already available or not, so for the REGISTER message. If the authUsername is not available, the
INVITE message must be challenged: this is done by the Authenticate block, as for the REGISTER
message.

The user will send a new INVITE message with the Authentication header. The variabile authCondition
is still 0, but this time the authUsername is available, therefore the block Database Query is taken.
Similarly to what was happening during the registration, the username taken from the Authentication
is searched in the customer’s table.

In the example below, authUsername is always identical to the fromUsername, and therefore the
search is done with the fromUsername, but it is not usually happening

Technical Note 11

Registrar Configuration

SRE compares the password of the database with the password in the SIP message, using the Authen-
ticate block:

• if the authentication fails, SRE will challenge the subscriber again
• If the authentication succeeds, SRE sets the parameter authStatus to 1

At this point, the script is reused again (even without a new INVITE message), this time following the
route with authStatus = 1: the INVITE is authenticated, and the call can proceed.

So, considering what described above, the script is used 3 times: - first time for generating the 407
Proxy Authentication Required with the challenge - second time to authenticate the message - third
time to proceed with the routing of the INVITE message

Technical Note 12

Registrar Configuration

4.2.2 Incoming call: lookup in location services

In case of incoming call from PSTN to a registered user, SRE must look for the called number, verify
that it is effectively registered, and then route the call according to the registration. The script below is
showing such example:

The first 3 blocks are used only to determine if the user is calling from PSTN or from the PBX, using the
tgrp parameter of the Contact header only, and it is not affecting the lookup in the location services.
The location services part is starting from the first Database Query, where SRE is looking for the called
phone number into its database: the called number present in the Request URI is searched in the
column number of the table customer_numbers (customers_numbers) and if it is successful, the AoR
is stored, and used to build the new Request-URI, which is passed to the Lookup in location services
block. Within this block, SRE will look for the Contact received during the registration phase and it
relays the call with the Contact in the Request URI.

The second Database query node is similar to the previous one, but it is also checking the case the
phone number is entered as number range (and therefore it is done the long prefix match search
instead of the precise search). For the rest, nothing changes. If no number is found in the database, the
call is rejected with a 404 Not Found message.

Technical Note 13

Registrar Configuration

4.3 Call Screening

The goal is to check that the CLI and the credentials in the INVITE message belong to the same subscriber.
The calling party number can be in several SIP header fields, and there is a priority (some header fields
are more relevant than other ones). In the script below we use the following rule: the header fields
containing the CLI in order of priority (highest priority first) are: - Diversion - P-Asserted-Identity -
Remote-Party-ID - From

Technical Note 14

Registrar Configuration

Here is an example on how to use the node “Extract SIP Header” to retrieve the SIP URI in the Remote-
Party-ID header field:

The Database query node can be used to check that the CLI and the authentication username belong
to the same subscriber, and to retrieve the subscriber password in a variable.

Technical Note 15

Registrar Configuration

5 Appendix 1

5.1 Prerequisites

The kamailio-mongodb package must be installed before the configuration described in the next
section: it contains the library db_mongodb.so which is mandatory to handle the registration.

In case the user is installing the package on a server without connection to the sw repositories, consider
the following dependencies: - libbson - libicu - mongo-c-driver-libs - pgdg-libmongoc

5.2 Sample configuration of Kamailio

To support the authentication, the file kamailio.cfg in /etc/kamailio must be edited as in the example
below.

Technical Note 16

Registrar Configuration

1 # *** To run in debug mode:
2 # - define WITH_SREREGISTRAR
3 #!define WITH_SREREGISTRAR
4

5 ...
6 #!ifdef WITH_MONGODB
7 # - database URL - used to connect to database server by modules such
8 # as: auth_db, acc, usrloc, a.s.o.
9 #!ifndef DBURL

10 #!define DBURL "mongodb://10.0.12.146,10.0.12.147,10.0.12.148/kamailio?
↪→ replicaSet=sre_location&slaveOk=true&readPreference=primaryPreferred"

11 #!endif
12 #!endif

Where 10.0.12.146,10.0.12.147,10.0.12.148 are 3 IP addresses of the MongoDB cluster of this example.

By default in kamailio the domain is the IP address of the SRE Registrar server, but we can change it by
setting the alias parameter in kamailio.cfg:

1 /* add local domain aliases */
2 alias="netaxis.be"

Then restart kamailio

1 [root@sre-reg ~]# service kamailio restart

5.3 MongoDB installation

Mongodb version 4.x and 5.x are supported from SRE release 3.2.10

On the three servers for Mongo DB, execute the following procedure. Create a /etc/yum.repos.d/mongodb-
org-3.6.repo file so that you can install MongoDB directly, using yum. Use the following repository
file:

1 [mongodb-org-3.6]
2 name=MongoDB Repository
3 baseurl=https://repo.mongodb.org/yum/redhat/7/mongodb-org/3.6/x86_64/
4 gpgcheck=1
5 enabled=1
6 gpgkey=https://www.mongodb.org/static/pgp/server-3.6.asc

To install the latest stable version of MongoDB, issue the following command:

1 sudo yum install -y mongodb-org-3.6.23 mongodb-org-server-3.6.23 mongodb-org-
↪→ shell-3.6.23 mongodb-org-mongos-3.6.23 mongodb-org-tools-3.6.23

Technical Note 17

Registrar Configuration

You can start the mongod process by issuing the following command:

1 sudo service mongod start

You can verify that the mongod process has started successfully by checking the contents of the log file
at /var/log/mongodb/mongod.log for a line reading

1 [initandlisten] waiting for connections on port <port>

where <port> is the port configured in /etc/mongod.conf, 27017 by default.

You can optionally ensure that MongoDB will start following a system reboot by issuing the following
command:

1 sudo chkconfig mongod on

5.4 MongoDB replica set configuration

The databases will be stored in /data/sre/location. The name of the replica Set is set to sre_location.

1 [root@mongodb1 ~]# cat /etc/mongod.conf
2 # Where and how to store data.
3 storage:
4 dbPath: /data/sre/location
5 journal:
6 enabled: true
7 # network interfaces
8 net:
9 port: 27017

10 bindIp: 0.0.0.0
11

12

13 #security:
14

15 #operationProfiling:
16

17 replication:
18 replSetName: sre_location

On the three servers, create the directory, change the owner and restart mongod

1 mkdir -p /data/sre/location
2 chown mongod.mongod /data/sre/location
3 service mongod restart

On one server, type “mongo” and then initiate the replicaset

Technical Note 18

Registrar Configuration

1 rs.initiate({_id : "sre_location", members: [{ _id: 0, host: "10.0.12.146" },{
↪→ _id: 1, host: "10.0.12.147" }, { _id: 2, host: "10.0.12.148" }]})

Where 10.0.12.146,10.0.12.147,10.0.12.148 are 3 IP addresses of the MongoDB cluster of this example.

5.5 MongoDB replica set configuration with an Arbiter

The databases will be stored in /data/sre/location. The name of the replica Set is set to sre_location.
On the two Mongo DB.

1 [root@mongodb1 ~]# cat /etc/mongod.conf
2 # Where and how to store data.
3 storage:
4 dbPath: /data/sre/location
5 journal:
6 enabled: true
7 # network interfaces
8 net:
9 port: 27017

10 bindIp: 0.0.0.0
11

12

13 #security:
14

15 #operationProfiling:
16

17 replication:
18 replSetName: sre_location

On the Arbiter

1 [root@mongodb3 ~]# cat /etc/mongod.conf
2 # Where and how to store data.
3 storage:
4 dbPath: /data/sre/arb
5 journal:
6 enabled: true
7 # network interfaces
8 net:
9 port: 27017

10 bindIp: 0.0.0.0
11

12

13 #security:
14

Technical Note 19

Registrar Configuration

15 #operationProfiling:
16

17 replication:
18 replSetName: sre_location

On the two mongo DB servers, create the directory, change the owner and restart mongod

1 mkdir -p /data/sre/location
2 chown mongod.mongod /data/sre/location
3 service mongod restart

On one server, type “mongo” and then initiate the replicaset

1 rs.initiate({_id : "sre_location", members: [{ _id: 0, host: "10.0.12.146" }]})

Add a second node on the same server

1 rs.add({ _id: 1, host: "10.0.12.147" })

Then add the arbiter on the same server

1 rs.addArb("10.0.12.148")

Where 10.0.12.146 is the primary server, 10.0.12.147 is the secondary server, and 10.0.12.148 is the
arbiter of this example.

Note

The status of the replication can be verified with the command rs.status() within the mongo
interface.

5.6 Populating MongoDB

Create the database kamailio, and the collection “version”. Inside the collection “version”, insert a
document for each table required by Kamailio: the tables location and location_attrs are required with
table_version 9 (with kamailio version 5.x) or 8 (with kamailio version 4.x) and 1 respectively.

Supposing that the configuration is done with kamailio 5.x. the following commands must be issued
on the mongo interface of the primary server:

1 sre_location:PRIMARY> use kamailio
2 sre_location:PRIMARY> db.createCollection("version")
3 sre_location:PRIMARY> show collections
4 version
5 sre_location:PRIMARY> db.getCollection("version").insert({table_name: "location

↪→ ", table_version: NumberInt(9)})

Technical Note 20

Registrar Configuration

6 sre_location:PRIMARY> db.getCollection("version").insert({table_name: "
↪→ location_attrs", table_version: NumberInt(1)})

6 Appendix 2

6.1 Basic registration Service Logic

Below the exported version of the service logic (for release 3.2 and higher). To import it, copy/paste it
into a text editor, rename the file with the extension slid and import it into SRE service logic editor.

1 {
2 "24": {
3 "nodes": {
4 "2": {
5 "id": 2,
6 "name": "save in location services",
7 "type": "output.nit.registrar.saveLocationService",
8 "description": "",
9 "values": {},

10 "archived": false,
11 "x": 650,
12 "y": 100
13 },
14 "0": {
15 "id": 0,
16 "name": "Start",
17 "type": "enter.start",
18 "description": "Start",
19 "values": {

Technical Note 21

Registrar Configuration

20 "next": 1
21 },
22 "archived": false,
23 "x": 100,
24 "y": 100
25 },
26 "1": {
27 "id": 1,
28 "name": "REGISTER auth?",
29 "type": "analysis.sequentialConditions",
30 "description": "",
31 "values": {
32 "conditions": [{
33 "variable": "authStatus",
34 "operator": "is",
35 "value": "1",
36 "ifTrue": 2
37 }],
38 "fallback": 3
39 },
40 "archived": false,
41 "x": 300,
42 "y": 100
43 },
44 "3": {
45 "id": 3,
46 "name": "check authUsername",
47 "type": "analysis.condition",
48 "description": "",
49 "values": {
50 "logic": "any",
51 "conditions": [{
52 "variable": "authUsername",
53 "operator": "exists",
54 "value": "True"
55 }, {
56 "variable": "authUsername",
57 "operator": "doesNotExist",
58 "value": "null"
59 }],
60 "ifTrue": 5,
61 "ifFalse": 4
62 },
63 "archived": false,
64 "x": 550,
65 "y": 200

Technical Note 22

Registrar Configuration

66 },
67 "4": {
68 "id": 4,
69 "name": "Check Password",
70 "type": "output.nit.registrar.authenticate",
71 "description": "",
72 "values": {
73 "password": "password",
74 "ha1": ""
75 },
76 "archived": false,
77 "x": 1000,
78 "y": 200
79 },
80 "5": {
81 "id": 5,
82 "name": "retrieve password",
83 "type": "query.queryDatabaseGeneric",
84 "description": "",
85 "values": {
86 "tables": ["registration.customers"],
87 "fields": [{
88 "field": "customers.password",
89 "storeInto": "password"
90 }, {
91 "field": "customers.name",
92 "storeInto": "customer_name"
93 }],
94 "joins": [],
95 "conditions": [{
96 "field": "customers.username",
97 "operator": "is",
98 "value": "authUsername"
99 }],

100 "logic": "and",
101 "orderBy": [],
102 "offset": "",
103 "joinType": "JOIN",
104 "fetch": "first",
105 "storeIntoRecordsList": "",
106 "ifRecordFound": 4,
107 "ifnoRecordFound": 4,
108 "caching": 0
109 },
110 "archived": false,
111 "x": 800,

Technical Note 23

Registrar Configuration

112 "y": 300
113 }
114 },
115 "name": "registration",
116 "description": ""
117 }
118 }

6.2 Database entry example

Technical Note 24

Registrar Configuration

6.3 Call flow example for REGISTRATION

7 Troubleshooting

7.1 MongoDB

By default, Kamailio can manage registrations in-memory on its own. To ensure that Kamailio is
properly connected to the MongoDB database and is populating records for persistence, several checks
can be performed. By establishing a connection to the MongoDB Kamailio database, it is possible to
confirm that Kamailio has created the location table, which stores information about the registered
endpoints.

{8} [root@sre4-cp1 ~]# mongo kamailio MongoDB shell version v5.0.23 connecting to:

↪→ mongodb://127.0.0.1:27017/kamailio?compressors=disabled&gssapiServiceName=mongodb

↪→ Implicit session: session { "id" : UUID("745bc7f5-fac2-4f64-abca-c892fd9ca071

↪→ ") } MongoDB server version: 5.0.23 ... sre_location:PRIMARY> show collections

↪→ location version

Technical Note 25

Registrar Configuration

It is also possible to query the location table as follows:

1 sre_location:SECONDARY> db.location.find()
2 { "_id" : ObjectId("654551b634ce7535954f8da1"), "username" : "john", "contact"

↪→ : "sip:john-kbg8bf86fdlkf@172.18.2.111:5060;transport=tcp", "expires" :
↪→ ISODate("2024-02-22T08:54:06Z"), "q" : -1, "callid" : "
↪→ 13579672010112023113959@117.114.6.30", "cseq" : 119577, "flags" : 0, "
↪→ cflags" : 0, "user_agent" : "n/a", "received" : null, "path" : null, "
↪→ socket" : "tcp:172.16.3.82:5061", "methods" : 7935, "last_modified" :
↪→ ISODate("2024-02-22T08:49:06Z"), "ruid" : "uloc-649e7b98-3595-2", "
↪→ instance" : null, "reg_id" : 0, "server_id" : 0, "connection_id" : 776, "
↪→ keepalive" : 0, "partition" : 0 }

If Kamailio does not populate MongoDB, it may be worth checking the Kamailio logs, which are, by
default, located in /var/log/messages. Examine the lines containing “mongodb” to find indications
that the Kamailio MongoDB module is initializing and opening connections to the MongoDB URL as
configured in kamailio.cfg:

1 [root@sre4-cp1 ~]# grep mongodb /var/log/messages
2 ...
3 Feb 21 10:27:40 sre4-cp1 kamailio[2332896]: 0(2332896) DEBUG: <core> [core/

↪→ sr_module.c:988]: init_mod(): db_mongodb
4 Feb 21 10:27:40 sre4-cp1 kamailio[2332896]: 0(2332896) DEBUG: db_mongodb [

↪→ db_mongodb_mod.c:96]: mod_init(): module initializing
5 ...
6 Feb 21 10:27:42 sre4-cp1 kamailio[2332896]: 0(2332896) DEBUG: db_mongodb [

↪→ mongodb_connection.c:55]: db_mongodb_new_connection(): connection open to
↪→ : mongodb://10.1.0.192,10.1.0.193/kamailio?replicaSet=sre_location&
↪→ readPreference=secondaryPreferred

Technical Note 26

	Introduction
	Terminology

	Sample configuration for registering a user
	Database for the SRE Registrar
	Table customers
	Table customer_numbers
	Configuration example

	Service Logic scripts
	Authentication and SRE registrar
	Simple Service Logic script for registration with authentication

	Call authentication
	Outgoing call: simple script for a call with authentication
	Incoming call: lookup in location services

	Call Screening

	Appendix 1
	Prerequisites
	Sample configuration of Kamailio
	MongoDB installation
	MongoDB replica set configuration
	MongoDB replica set configuration with an Arbiter
	Populating MongoDB

	Appendix 2
	Basic registration Service Logic
	Database entry example
	Call flow example for REGISTRATION

	Troubleshooting
	MongoDB

