
REST API Manual

SRE 4.0

REST API Manual

Table of Contents

1 Introduction 2

2 Datamodel 3

3 Security considerations 4

4 Supported operations 4

5 Base URL format 4

6 Pagination 5

7 Filtering 5

8 Ordering 7

9 Endpoints 7
9.1 List all records . 7

9.1.1 Success . 7
9.2 Search records . 8

9.2.1 Success . 8
9.2.2 Success order by number . 9
9.2.3 No matching records found . 10

9.3 Get a single record by id . 10
9.3.1 Success . 11
9.3.2 Id not found . 11

9.4 Create a new record . 11
9.4.1 Success . 12
9.4.2 Failure: unique constraint violated . 12
9.4.3 Failure: data validation failed . 12

9.5 Create multiple records . 13
9.5.1 Success . 13
9.5.2 Failure: unique constraint violated . 14
9.5.3 Failure: data validation failed . 14

9.6 Edit a single record by id . 15
9.6.1 Success . 16
9.6.2 Failure: unique constraint violated . 16
9.6.3 Failure: data validation failed . 16

SRE 4.0 1

REST API Manual

9.6.4 Id not found . 17
9.7 Edit records by search criteria . 17

9.7.1 Success . 18
9.7.2 No matching records found . 18

9.8 Delete a single record by id . 19
9.8.1 Success . 19
9.8.2 Id not found . 19

9.9 Delete records by search criteria . 19
9.9.1 Success . 20
9.9.2 No matching records found . 20

9.10 Kill call . 20
9.10.1 Kill call by calling number . 20
9.10.2 Kill call by called number . 21
9.10.3 Kill call by calling and called number . 21
9.10.4 Kill call by callid . 22

1 Introduction

This document describes the native REST API that can be used to provision data on an SRE deploy-
ment.

Netaxis SRE consists of 2 Element Managers (1 master and 1 standby) and a set of Call Processing nodes
that are listening to SIP/ENUM/HTTP requests from the network. The relevant data to provide the
service is stored in configurable tables of the SRE Data Model.

SRE 4.0 2

REST API Manual

Figure 1 – Example of an SRE architecture

This document describes the generic API that can be used to provision data on the SRE deployment.

For the sake of clarity, it’s worth underlining that SRE exposes two distinct interfaces:

• The native REST API is used for provisioning operations on individual records of the Data Model.
Requests to this interface trigger direct operations on the database. This interface strictly follows
the Data Model definition and is specified in 4.

• The HTTP interface is used for triggering a Service Logic whose actions entirely depend on
the Service Logic scope and implementation. As an example, requests to this interface trigger
the execution of service logics in order to ease the management of multiple records, or the
addition of records in the SRE DB and on external systems at the same time. This interface is
implementation dependent and therefore it’s not specified in this document.

The native REST API interface can be accessed by default at port 5000, nevertheless this is config-
urable.

2 Datamodel

The Data Model is the set of tables whose structure is defined via the Data Model Editor and activated
through the Datamodel Versioning tool. The tables part of the Data Model are provisioned either
manually via GUI, or via Batch Provisioning (CSV), or via native REST API.

SRE 4.0 3

REST API Manual

The actual Data Model in use in an SRE implementation widely depends on the requirements and
details of the implementation, therefore it’s not possible to generalize a model here.

It is worth noting that the native REST API interface is strictly linked to a Data Model and namely to its
activated version, and it doesn’t require an activation process in this context. In other words, when a
Data Model version is activated on either A or B database sides (or both), the REST API definition will
immediately follow the newly activated data model structure.

3 Security considerations

Both the REST and HTTP interface described below can be accessed over HTTP or HTTPS. On HTTPS,
only TLS v1.2 is enabled.

Either Basic Auth or Bearer token authentication are used, which means that all requests must include
either the Username/Password (Basic Auth), or the Authorization header with the following syntax:

1 Authorization: Bearer <token>

Credentials or bearer tokens are generated through the SRE GUI, with configurable access rights.

4 Supported operations

The REST API is a JSON-based API used for operations on individual records. It supports the following
operations:

• GET: Get a single database record or a set of records

• POST: Create new database record(s)

• PUT/PATCH: Update one or more records

• DELETE: Delete database record(s)

5 Base URL format

The base format of request URL is:

https://<EM-address>:5000/<service>/<version>/<table>

where:

• <EM-address> is the IP address of the active Element Manager

SRE 4.0 4

REST API Manual

• <service> is the service name containing the table to access (i.e., the data model name in the
Data Model Editor menu)

• <version> is either active or standby, depending on the version to access. Refer to the GUI menu
Settings -> Data Versioning to select the active version.

• <table> is the table to access, as defined in the SRE Data model.

The available endpoints are described below. For each endpoint, examples are provided covering
different use cases.

6 Pagination

Response of a get request that return a set of records, is paginated. The total number of results
num_results, the current page page and the total number of pages total_pages are also returned.

The following parameters can be specified in the query in order to control the returned results:

• <results_per_page> is the maximum number of results to be returned, by default 10
• <page> is the page number, by default 1

7 Filtering

Filtering is used to select only a subset of records of a get request or to limit scope of a patch/put/delete
request.

The query filter is defined in a JSON object whose format is:

1 {
2 "filters": [
3 <condition-1>,
4 <condition-2>,
5 ...
6]
7 }

where conditions are structured as:

1 {"name": <field-name>, "op": <operator>, "val": <argument>}

where:

• <field-name> is the name of the table field

SRE 4.0 5

REST API Manual

• <operator> is one of the SQL operators ==, !=, >, <, >=, <=, in, not_in, is_null, is_not_null, like,
ilike, has, any

• <argument> is the operator second argument

Additional criteria can be defined and consolidated using logical “and” and “or”.

1 {"and": [{"name": <field-name>, "op": <operator>, "val": <argument>}, {"name":
↪→ <field-name>, "op": <operator>, "val": <argument>}]}

The query filter can be added to the request in two ways: - by adding it to the q query parameter in the
request url

1 Example:
2

3 `http://<base_url>/q={"filters":[{"name":"number","op":"like","val":"322%"}]}`
4

5 ::: note
6 all special characters must be url-encoded
7 :::

• by adding it in the json body q key (only for non-get requests)

Example: “‘ PATCH https://///

HTTP/1.1

{ “q”: {“filters”: [{“name”:“mycol”,“op”:“==”,“val”:“myvalue”}]}, “mycol”:“updatedval” } “‘

Warning

If filter is specified in both url and body a 400 error is returned.

By adding:

1 {"single": true}

to the query parameter only one record will be returned.

Note

In this case the returned object will be a dictionary and not a list and pagination fields will not be
present.

SRE 4.0 6

REST API Manual

8 Ordering

Response of a get request that return a set of records, can be ordered. To add ordering an order_by
key must be set in the q query parameter. The order_by value is a list of dictionary with the following
keys:

• <order-field> the name of the table field to be used to order records
• <direction> is either asc or desc

Example:

http://<base_url>/q={"order_by":[{"order-field":"mycolumn","direction":"asc"}]}

9 Endpoints

9.1 List all records

GET https://<EM-address>:5000/<service>/<version>/<table>

This request is used to list all records from a table. Response to this request uses pagination to return
the records. Results can be ordered.

The following response codes can be received:

• 200 for a successful request

• 404when the requested data was not found

9.1.1 Success

1 GET /<service>/active/<table> HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000

200 OK

1 {
2 "num_results": 1,
3 "objects": [
4 {
5 "id": 1,
6 ...
7 <rest of content>
8 },

SRE 4.0 7

REST API Manual

9],
10 "page": 1,
11 "total_pages": 1
12 }

9.2 Search records

GEThttps://<EM-address>:5000/<service>/<version>/<table>?q={“filter”:<filter_object>,“order_by”:<order_object>}

This request is used to list all records matching a specified query filter from a table. Results are
paginated.

If no ordering is specified in the request, the results will be ordered by ascending id.

Results are paginated.

The following response codes can be received:

• 200 for a successful request

• 404when no records matching the query filter were found

9.2.1 Success

1 GET /<service>/active/<table>?q={"filters":[{"name":"number","op":"==","val":"
↪→ 329999999"}]} HTTP/1.1

2 Host: <EM-Host-or-FQDN>:5000

200 OK

1 {
2 "num_results": 1,
3 "objects": [
4 {
5 "id": 1,
6 "number": "329999999",
7 ...
8 <rest of content>
9 }

10],
11 "page": 1,
12 "total_pages": 1
13 }

SRE 4.0 8

REST API Manual

9.2.2 Success order by number

1 GET /<service>/active/<table>?q={"filters":[{"name":"number","op":"like","val":
↪→ "322816655%"}],"order_by":[{"field":"number","direction":"asc"}]} HTTP
↪→ /1.1

2 Host: <EM-Host-or-FQDN>:5000

200 OK

1 {
2 "num_results": 10,
3 "objects": [
4 {
5 "id": 796,
6 "number": "3228166550",
7 <rest of content>
8 },
9 {

10 "id": 795,
11 "number": "3228166551",
12 <rest of content>
13 },
14 {
15 "id": 794,
16 "number": "3228166552",
17 <rest of content>
18 },
19 {
20 "id": 793,
21 <rest of content>
22 },
23 {
24 "id": 792,
25 "number": "3228166554",
26 <rest of content>
27 },
28 {
29 "id": 801,
30 "number": "3228166555",
31 <rest of content>
32 },
33 {
34 "id": 800,
35 "number": "3228166556",
36 <rest of content>
37 },

SRE 4.0 9

REST API Manual

38 {
39 "id": 799,
40 "number": "3228166557",
41 <rest of content>
42 },
43 {
44 "id": 798,
45 "number": "3228166558",
46 <rest of content>
47 },
48 {
49 "id": 797,
50 "number": "3228166559",
51 <rest of content>
52 }
53],
54 "page": 1,
55 "total_pages": 1
56 }

9.2.3 Nomatching records found

1 GET /<service>/active/<table>?q={"filters":[{"name":"number","op":"==","val":"
↪→ 32472801897"}]} HTTP/1.1

2 Host: <EM-Host-or-FQDN>:5000

404 Not Found

1 {
2 "code": "404",
3 "message": "The path '/<service>/active/<table>' was not found."
4 }

9.3 Get a single record by id

GET https://<EM-address>:5000/<service>/<version>/<table>/<id>

This request is used to query a single record by its id.

The following response codes can be received:

• 200 for a successful request

• 404when the requested record was not found

SRE 4.0 10

REST API Manual

9.3.1 Success

1 GET /<service>/active/<table>/3446 HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000

200 OK

1 {
2 "id": 1,
3 "number": "32472801896",
4 <rest of content>
5 }

9.3.2 Id not found

1 GET /<service>/active/<table>/3446 HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000

404 Not Found

1 {
2 "code": "404",
3 "message": "The path '/<service>/active/<table>/3446' was not found."
4 }

9.4 Create a new record

POST https://<EM-address>:5000/<service>/<version>/<table>

This request is used to create a new record. The parameters that must be specified in the body depend
on the data model, in general they are the minimum set of non-nullable fields of the affected table.

The provisioning must comply with any unicity constraints on the table.

The following response codes can be received:

• 201when the record was successfully created

• 400when the record could not be created, for example because the unicity constraint is violated

• 500when the input data could not be validated, for example a string was provided instead of an
int

SRE 4.0 11

REST API Manual

9.4.1 Success

1 POST /<service>/active/<table> HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 287
4 {
5 "number": "3227971234",
6 <rest of content>
7 }

201 Created

1 {
2 "id": 3446,
3 "number": "3227971234",
4 <rest of content>
5 }

9.4.2 Failure: unique constraint violated

1 POST /<service>/active/<table> HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 287
4 {
5 "number": "3227971234",
6 <rest of content>
7 }

400 Bad Request

1 {
2 "code": "400",
3 "message": "ERROR: duplicate key value violates unique constraint \"

↪→ idx_2f433a21e00157b3235fab51aa470e3f4cd2e87e08dd7905ca36e734\"\nDETAIL:
↪→ Key <key

4 details...> already exists.\n"
5 }

9.4.3 Failure: data validation failed

1 POST /<service>/active/<table> HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 287

SRE 4.0 12

REST API Manual

4 {
5 "number": "3227971234",
6 <rest of content>
7 }

500 Internal Server Error

1 {
2 "code": "500",
3 "message": "The server encountered an unexpected condition which prevented it

↪→ from fulfilling the request."
4 }

9.5 Createmultiple records

POST https://<EM-address>:5000/<service>/<version>/<table>/_bulk

This request is used to create new records in bulk. The list of records to be created must be specified in
the body of the request, with each record specified as described in Create a new record.

The complete operation is performed inside a transaction so that if any record fails, the complete
transaction is not applied. The error returned indicates which record failed.

In case of successful request the number of records that have been created inserted will be returned.

The following response codes can be received:

• 201when the records were successfully created

• 400when the records could not be created, for example because the unicity constraint is violated

• 500when the input data could not be validated, for example a string was provided instead of an
int

9.5.1 Success

1 POST /<service>/active/<table>/_bulk HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 536
4 [
5 {
6 "number": "3227981234",
7 <rest of content>
8 },
9 {

SRE 4.0 13

REST API Manual

10 "number": "3227987648",
11 <rest of content>
12 }
13]

201 Created

1 {
2 "inserted": 10
3 }

9.5.2 Failure: unique constraint violated

1 POST /<service>/active/<table>/_bulk HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 536
4 [
5 {
6 "number": "3227981234",
7 <rest of content>
8 },
9 {

10 "number": "3227987648",
11 <rest of content>
12 }
13]

400 Bad Request

1 {
2 "code": "400",
3 "message": "ERROR: duplicate key value violates unique constraint \"

↪→ idx_1f1978ef0f3f01867abe49bf12fe6643f38d6583a4653a2326d95e10\"\nDETAIL:
↪→ Key <key

4 name and details> already exists.\\n"
5 }

9.5.3 Failure: data validation failed

1 POST /<service>/active/<table>/_bulk HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 536
4 [
5 {

SRE 4.0 14

REST API Manual

6 "number": "3227981234",
7 <rest of content>
8 },
9 {

10 "number": "3227987648",
11 <rest of content>
12 }
13]

500 Internal Server Error

1 {
2 "code": "500",
3 "message": "The server encountered an unexpected condition which prevented it

↪→ from fulfilling the request."
4 }

9.6 Edit a single record by id

PUT https://<EM-address>:5000/<service>/<version>/<table>/<id>

Note

PATCHmethod can also be used with the same syntax.

This request is used to update a single record specified by its id. An alternative is to update records
specified by a filter criteria, see the Edit records by search criteria request.

Any parameter described in the Create a new record request can be updated. The same unicity con-
straints apply.

In case of successful update the full updated record will be returned.

The following response codes can be received:

• 200when the record was successfully updated

• 400when the record could not be updated, for example because the unicity constraint is violated

• 404when the record was not found

• 500when the input data could not be validated, for example a string was provided instead of an
int

SRE 4.0 15

REST API Manual

9.6.1 Success

1 PUT /<service>/active/<table>/3446 HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 72
4 {
5 <fields to be modified>
6 }

200 OK

1 {
2 "id": 3446,
3 <rest of content>
4 }

9.6.2 Failure: unique constraint violated

1 PUT /<service>/active/<table>/3446 HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 33
4 {
5 "number": "32495212366"
6 }

400 Bad Request

1 {
2 "code": "400",
3 "message": "ERROR: duplicate key value violates unique constraint \"

↪→ idx_2f433a21e00157b3235fab51aa470e3f4cd2e87e08dd7905ca36e734\"\nDETAIL:
↪→ Key <key

4 details> already exists.\n"
5 }

9.6.3 Failure: data validation failed

1 PUT /<service>/active/<table>/3446 HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 26
4 {
5 <content violating the data validation>
6 }

SRE 4.0 16

REST API Manual

500 Internal Server Error

1 {
2 "code": "500",
3 "message": "The server encountered an unexpected condition which prevented it

↪→ from fulfilling the request."
4 }

9.6.4 Id not found

1 PUT /<service>/active/<table>/3446 HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 72
4 {
5 <content>
6 }

404 Not Found

1 {
2 "code": "404",
3 "message": "The path '/<service>/active/<table>/3446' was not found."
4 }

9.7 Edit records by search criteria

PATCH https://<EM-address>:5000/<service>/<version>/<table>?q={“filters”:<filter_object>}

Note

PUTmethod can also be used with the same syntax.

This request is used to update a set of records specified by a query filter, as described in the filtering
section.

Any parameter described in the Create a new record request can be updated. The same unicity con-
straints apply.

In case of successful update the number of records that have been updated num_modified will be
returned.

The following response codes can be received:

• 200when at least one record was successfully updated

SRE 4.0 17

REST API Manual

• 400 when the record(s) could not be updated, for example because the unicity constraint is
violated

• 404when no record matching the query filter was found

• 500when the input data could not be validated, for example a string was provided instead of an
int

9.7.1 Success

1 PATCH /<service>/active/<table>?q={"filters":[{"name":"number","op":"==","val":
↪→ "3227971234"},<more filters...>]} HTTP/1.1

2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 72
4 {
5 <request content>
6 }

200 OK

1 {
2 "num_modified": 1
3 }

9.7.2 Nomatching records found

1 PATCH /<service>/active/<table>?q={"filters":[{"name":"number","op":"==","val":
↪→ "3227971235"},<more filters...>]} HTTP/1.1

2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 72
4 {
5 <request content>
6 }

404 Not Found

1 {
2 "code": "404",
3 "message": "The path '/<service>/active/<table>' was not found."
4 }

SRE 4.0 18

REST API Manual

9.8 Delete a single record by id

DELETE https://<EM-address>:5000/<service>/<version>/<table>/<id>

This request is used to delete a single record specified by its id. An alternative is to delete records
specified by a filter criteria, see the Delete records by search criteria request.

The following response codes can be received:

• 204when the record was successfully deleted, in that case the response has no body

• 404when the record was not found

9.8.1 Success

1 DELETE /<service>/active/<table>/3446 HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000

204 No Content

9.8.2 Id not found

1 DELETE /<service>/active/<table>/3446 HTTP/1.1
2 Host: <EM-Host-or-FQDN>:5000

404 Not Found

1 {
2 "code": "404",
3 "message": "The path '/<service>/active/<table>/3446' was not found."
4 }

9.9 Delete records by search criteria

DELETE https://<EM-address>:5000/<service>/<version>/<table>?q={"filters": [<condition-
1>,<condition-2>,...]}

This request is used to delete a set of records specified by a query filter, as described in the filtering
section.

In case of successful delete the number of records that have been deleted deleted_records will be
returned.

The following response codes can be received:

SRE 4.0 19

REST API Manual

• 200when at least one record was successfully deleted

• 404when no record matching the query filter was found

9.9.1 Success

1 DELETE /<service>/active/<table>?q={"filters":[{"name":"number","op":"==","val"
↪→ :"3227972345"},<more filters...>]} HTTP/1.1

2 Host: <EM-Host-or-FQDN>:5000

200 OK

1 {
2 "deleted_records": 1
3 }

9.9.2 Nomatching records found

1 DELETE /<service>/active/<table>?q={"filters":[{"name":"number","op":"==","val"
↪→ :"3227972345"},<more filters...>]} HTTP/1.1

2 Host: <EM-Host-or-FQDN>:5000

404 Not Found

1 {
2 "code": "404",
3 "message": "no objects found"
4 }

9.10 Kill call

9.10.1 Kill call by calling number

1 POST /killcall
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 100
4 {
5 "calling":"sip:+7654321"
6 }

200 OK

SRE 4.0 20

REST API Manual

1 {
2 "killed": 1
3 }

This request is used to close an ongoing call from the specified calling number. A regular expression
can be used. The number of closed calls is returned, if no call has been found killed counter is 0.

9.10.2 Kill call by called number

1 POST /killcall
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 100
4 {
5 "called":"sip:+7654321"
6 }

200 OK

1 {
2 "killed": 1
3 }

This request is used to close an ongoing call to the specified called number. A regular expression can
be used. The number of closed calls is returned, if no call has been found killed counter is 0.

9.10.3 Kill call by calling and called number

1 POST /killcall
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 100
4 {
5 "calling":"sip:+1234567"
6 "called":"sip:+7654321"
7 }

200 OK

1 {
2 "killed": 1
3 }

This request is used to close an ongoing call matching both calling and called number. A regular
expression can be used for both fields. The number of closed calls is returned, if no call has been found

SRE 4.0 21

REST API Manual

killed counter is 0.

9.10.4 Kill call by callid

1 POST /killcall
2 Host: <EM-Host-or-FQDN>:5000
3 Content-Length: 100
4 {
5 "callid":"825ADB3C-4C23-4F05-AD1C-47F5C4BE4B42"
6 }

200 OK

1 {
2 "killed": 1
3 }

This request is used to close an ongoing call matching a specific callid. The number of closed calls is
returned, if no call has been found killed counter is 0.

SRE 4.0 22

	Introduction
	Data model
	Security considerations
	Supported operations
	Base URL format
	Pagination
	Filtering
	Ordering
	Endpoints
	List all records
	Success

	Search records
	Success
	Success order by number
	No matching records found

	Get a single record by id
	Success
	Id not found

	Create a new record
	Success
	Failure: unique constraint violated
	Failure: data validation failed

	Create multiple records
	Success
	Failure: unique constraint violated
	Failure: data validation failed

	Edit a single record by id
	Success
	Failure: unique constraint violated
	Failure: data validation failed
	Id not found

	Edit records by search criteria
	Success
	No matching records found

	Delete a single record by id
	Success
	Id not found

	Delete records by search criteria
	Success
	No matching records found

	Kill call
	Kill call by calling number
	Kill call by called number
	Kill call by calling and called number
	Kill call by callid

